Algebra 2

1-03 Solve Linear Systems in Three Variables

Linear equation in 3 variables graphs a ______

Solution to system in 3 variables

Ordered	()
Is (2, −4, 1) a solution of	$\begin{cases} x + 3y - z = -11 \\ 2x + y + z = 1 \\ 5x - 2y + 3z = 21 \end{cases}$

Elimination Method

Solve $\begin{cases} 2x + 3y + 7z = -3\\ x - 6y + z = -4\\ -x - 3y + 8z = 1 \end{cases}$

Like two variables, you just do it _____ once.

- 1. Combine ______ and _____ to eliminate a variable
- 2. Combine ______ and _____ to eliminate the ______ variable as before
- 3. Combine these ______ equations to find the ______ variables
- 4. Substitute those ______ variables into one of the ______ equations to get the ______ variable
- If you get a ______ statement like 8 = 0 → _____ solution
- If you get an _____ like $0 = 0 \rightarrow$ _____ solutions

Solve $\begin{cases} -x + 2y + z = 3\\ 2x + 2y + z = 5\\ 4x + 4y + 2z = 6 \end{cases}$

	Nume:
Solve $\begin{cases} x + y + z = 6 \\ x - y + z = 6 \\ 4x + y + 4z = 24 \end{cases}$	
Solve $x - y + z = 6$	
Solve $\begin{cases} x - y + z = 0 \end{cases}$	
(4x + y + 4z = 24)	
If there are infinitely many solutions	
in there are initiately many solutions	
• Let (Use <i>x</i> , <i>y</i> , or <i>z</i> based on what is convenient)	
Solve for in terms of	

- Substitute those to find _____ in terms of _____
- Sample answer ____

You have \$1.42 in quarters, nickels, and pennies. You have twice as many nickels as quarters. You have 14 coins total. How many of each coin do you have?

32 #1, 5, 9, 15, 17, 19, 23, 43, 47, 51, 53, 55 = 12 (You can solve them all by elimination if you want.)