## Algebra 2

## 1-03 Solve Linear Systems in Three Variables

- Linear equation in 3 variables graphs a $\qquad$


## Solution to system in $\mathbf{3}$ variables

- Ordered ___

Is $(2,-4,1)$ a solution of $\left\{\begin{array}{l}x+3 y-z=-11 \\ 2 x+y+z=1 \\ 5 x-2 y+3 z=21\end{array}\right.$

## Elimination Method

Like two variables, you just do it $\qquad$ once.

1. Combine $\qquad$ and $\qquad$ to eliminate a variable
2. Combine $\qquad$ and $\qquad$ to eliminate the $\qquad$ variable as before
3. Combine these $\qquad$ equations to find the $\qquad$ variables
4. Substitute those $\qquad$ variables into one of the $\qquad$ equations to get the $\qquad$ variable

- If you get a $\qquad$ statement like $8=0 \rightarrow$ $\qquad$ solution
- If you get an $\qquad$ like $0=0 \rightarrow$ solutions
Solve $\left\{\begin{aligned} 2 x+3 y+7 z & =-3 \\ x-6 y+z & =-4 \\ -x-3 y+8 z & =1\end{aligned}\right.$

Solve $\left\{\begin{array}{l}-x+2 y+z=3 \\ 2 x+2 y+z=5 \\ 4 x+4 y+2 z=6\end{array}\right.$

```
Solve \(\left\{\begin{array}{l}x+y+z=6 \\ x-y+z=6\end{array}\right.\)
    \(4 x+y+4 z=24\)
```


## If there are infinitely many solutions

- Let $\qquad$ (Use $x, y$, or $z$ based on what is convenient)
- Solve for $\qquad$ in terms of $\qquad$
- Substitute those to find $\qquad$ in terms of $\qquad$
- Sample answer $\qquad$
You have $\$ 1.42$ in quarters, nickels, and pennies. You have twice as many nickels as quarters. You have 14 coins total. How many of each coin do you have?
$32 \# 1,5,9,15,17,19,23,43,47,51,53,55=12$ (You can solve them all by elimination if you want.)

